2.9. Read SQL
File paths works also with URLs
SQL functions uses SQLAlchemy, which supports many RDBMS
Read SQL query or database table into a DataFrame
>>> import pandas as pd
Read SQL query or database table into a DataFrame:
>>> pd.read_sql()
Read SQL query into a DataFrame
>>> pd.read_sql_query()
Read SQL database table into a DataFrame
>>> pd.read_sql_table()
>>> pd.read_table()
2.9.1. Read SQL
>>> import sqlite3
>>> import requests
>>>
>>>
>>> DATA = 'https://python3.info/_static/apollo11.db'
>>> DATABASE = '/tmp/myfile.db'
>>>
>>> SQL = """
... SELECT *
... FROM apollo11
... """
>>>
>>>
>>> # Download database
>>> with open(DATABASE, mode='wb') as db:
... resp = requests.get(DATA)
... db.write(resp.content)
49152
>>>
>>>
>>> # Read data from database
>>> with sqlite3.connect(DATABASE) as db:
... df = pd.read_sql(SQL, db, parse_dates=['datetime', 'date'], index_col='datetime')
>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 250 entries, 1969-07-14 21:00:00 to 1969-08-27 00:00:00
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 250 non-null datetime64[ns]
1 time 250 non-null object
2 met 250 non-null int64
3 category 250 non-null object
4 event 250 non-null object
dtypes: datetime64[ns](1), int64(1), object(3)
memory usage: 56.0 KB
>>> df['event'].head(n=5)
datetime
1969-07-14 21:00:00 Terminal countdown started.
1969-07-15 16:00:00 Scheduled 11-hour hold at T-9 hours.
1969-07-16 03:00:00 Countdown resumed at T-9 hours.
1969-07-16 08:30:00 Scheduled 1-hour 32-minute hold at T-3 hours 3...
1969-07-16 10:02:00 Countdown resumed at T-3 hours 30 minutes.
Name: event, dtype: object