5.15. DataFrame Statistics

  • .count()

  • .value_counts()

  • .nunique()

  • .sum()

  • .cumsum()

  • .prod()

  • .cumprod()

  • .min()

  • .idxmin()

  • .cummin()

  • .max()

  • .idxmax()

  • .cummax()

  • .mean()

  • .median()

  • .mode()

  • .rolling(window=3).mean()

  • .abs()

  • .std()

  • .mad() - Mean absolute deviation (PL: Odchylenie bezwzględne)

  • .sem() - Standard Error of the Mean (SEM) (PL: błąd standardowy średniej)

  • .skew() - Skewness - 3rd moment (PL: skośność)

  • .kurt() - Kurtosis - 4th moment (PL: kurtoza)

  • .quantile(.33) - Sample quantile (value at %). Quantile also known as Percentile

  • .quantile([.25, .5, .75])

  • .var()

  • .corr()

  • .describe()

  • .nsmallest()

  • .values()

  • .rank() - Compute numerical data ranks (1 through n) along axis.

5.15.1. SetUp

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(0)
>>>
>>>
>>> df = pd.DataFrame(
...     columns = ['Morning', 'Noon', 'Evening', 'Midnight'],
...     index = pd.date_range('1999-12-30', periods=7),
...     data = np.random.randn(7, 4))
>>>
>>> df
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.15.2. Count

Number of non-null observations:

>>> df.count()
Morning     7
Noon        7
Evening     7
Midnight    7
dtype: int64
>>> df.value_counts()  
Morning    Noon       Evening   Midnight
-2.552990   0.653619  0.864436  -0.742165    1
-0.103219   0.410599  0.144044   1.454274    1
 0.761038   0.121675  0.443863   0.333674    1
 1.494079  -0.205158  0.313068  -0.854096    1
 1.764052   0.400157  0.978738   2.240893    1
 1.867558  -0.977278  0.950088  -0.151357    1
 2.269755  -1.454366  0.045759  -0.187184    1
Name: count, dtype: int64
>>> df.nunique()
Morning     7
Noon        7
Evening     7
Midnight    7
dtype: int64

5.15.3. Sum

Sum of values:

df.sum() Morning 5.500273 Noon -1.050752 Evening 3.739996 Midnight 2.094039 dtype: float64

Cumulative sum:

>>> df.cumsum()
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  3.631610 -0.577121  1.928826  2.089536
2000-01-01  3.528391 -0.166522  2.072870  3.543809
2000-01-02  4.289429 -0.044847  2.516733  3.877484
2000-01-03  5.783508 -0.250005  2.829801  3.023388
2000-01-04  3.230518  0.403613  3.694237  2.281223
2000-01-05  5.500273 -1.050752  3.739996  2.094039

5.15.4. Product

Product of values:

>>> df.prod()
Morning     2.240538
Noon       -0.003810
Evening     0.000736
Midnight    0.019528
dtype: float64

Cumulative product:

>>> df.cumprod()
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  3.294470 -0.391065  0.929888 -0.339175
2000-01-01 -0.340051 -0.160571  0.133944 -0.493254
2000-01-02 -0.258792 -0.019537  0.059453 -0.164586
2000-01-03 -0.386656  0.004008  0.018613  0.140572
2000-01-04  0.987128  0.002620  0.016090 -0.104328
2000-01-05  2.240538 -0.003810  0.000736  0.019528

5.15.5. Extremes

Minimum, index of minimum and cumulative minimum:

>>> df.min()
Morning    -2.552990
Noon       -1.454366
Evening     0.045759
Midnight   -0.854096
dtype: float64
>>> df.idxmin()
Morning    2000-01-04
Noon       2000-01-05
Evening    2000-01-05
Midnight   2000-01-03
dtype: datetime64[ns]
>>> df.cummin()
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.764052 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219 -0.977278  0.144044 -0.151357
2000-01-02 -0.103219 -0.977278  0.144044 -0.151357
2000-01-03 -0.103219 -0.977278  0.144044 -0.854096
2000-01-04 -2.552990 -0.977278  0.144044 -0.854096
2000-01-05 -2.552990 -1.454366  0.045759 -0.854096

Maximum, index of maximum and cumulative maximum:

>>> df.max()
Morning     2.269755
Noon        0.653619
Evening     0.978738
Midnight    2.240893
dtype: float64
>>> df.idxmax()
Morning    2000-01-05
Noon       2000-01-04
Evening    1999-12-30
Midnight   1999-12-30
dtype: datetime64[ns]
>>> df.cummax()
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558  0.400157  0.978738  2.240893
2000-01-01  1.867558  0.410599  0.978738  2.240893
2000-01-02  1.867558  0.410599  0.978738  2.240893
2000-01-03  1.867558  0.410599  0.978738  2.240893
2000-01-04  1.867558  0.653619  0.978738  2.240893
2000-01-05  2.269755  0.653619  0.978738  2.240893

5.15.6. Average

Arithmetic mean of values:

>>> df.mean()
Morning     0.785753
Noon       -0.150107
Evening     0.534285
Midnight    0.299148
dtype: float64

Arithmetic median of values:

>>> df.median()
Morning     1.494079
Noon        0.121675
Evening     0.443863
Midnight   -0.151357
dtype: float64

Mode:

>>> df.mode()
    Morning      Noon   Evening  Midnight
0 -2.552990 -1.454366  0.045759 -0.854096
1 -0.103219 -0.977278  0.144044 -0.742165
2  0.761038 -0.205158  0.313068 -0.187184
3  1.494079  0.121675  0.443863 -0.151357
4  1.764052  0.400157  0.864436  0.333674
5  1.867558  0.410599  0.950088  1.454274
6  2.269755  0.653619  0.978738  2.240893

Rolling Average:

>>> df.rolling(window=30)
Rolling [window=30,center=False,axis=0,method=single]
>>>
>>> df.rolling(window=3).mean()
             Morning      Noon   Evening  Midnight
1999-12-30       NaN       NaN       NaN       NaN
1999-12-31       NaN       NaN       NaN       NaN
2000-01-01  1.176130 -0.055507  0.690957  1.181270
2000-01-02  0.841792 -0.148335  0.512665  0.545530
2000-01-03  0.717299  0.109038  0.300325  0.311284
2000-01-04 -0.099291  0.190045  0.540456 -0.420862
2000-01-05  0.403615 -0.335302  0.407754 -0.594482
../../_images/pandas-dataframe-stats-rolling.png

Figure 5.18. Rolling Average

5.15.7. Distribution

Absolute value:

>>> df.abs()
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558  0.977278  0.950088  0.151357
2000-01-01  0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079  0.205158  0.313068  0.854096
2000-01-04  2.552990  0.653619  0.864436  0.742165
2000-01-05  2.269755  1.454366  0.045759  0.187184

Standard deviation:

>>> df.std()
Morning     1.671798
Noon        0.787967
Evening     0.393169
Midnight    1.151785
dtype: float64
../../_images/pandas-dataframe-stats-stdev.png

Figure 5.19. Standard Deviation

Standard Error of the Mean (SEM):

>>> df.sem()
Morning     0.631880
Noon        0.297824
Evening     0.148604
Midnight    0.435334
dtype: float64
../../_images/pandas-dataframe-stats-sem.png

Figure 5.20. Standard Error of the Mean (SEM)

Skewness (3rd moment):

>>> df.skew()
Morning    -1.602706
Noon       -0.907414
Evening     0.031047
Midnight    0.915190
dtype: float64
../../_images/pandas-dataframe-stats-skew.png

Figure 5.21. Skewness

Kurtosis (4th moment):

>>> df.kurt()
Morning     2.502051
Noon       -0.588010
Evening    -2.208781
Midnight   -0.351782
dtype: float64
../../_images/pandas-dataframe-stats-kurt.png

Figure 5.22. Kurtosis

Sample quantile (value at %). Quantile also known as Percentile:

>>> df.quantile(.33)
Morning     0.743753
Noon       -0.220601
Evening     0.309687
Midnight   -0.198283
Name: 0.33, dtype: float64
>>> df.quantile([.25, .5, .75])
       Morning      Noon   Evening  Midnight
0.25  0.328909 -0.591218  0.228556 -0.464674
0.50  1.494079  0.121675  0.443863 -0.151357
0.75  1.815805  0.405378  0.907262  0.893974

Variance:

>>> df.var()
Morning     2.794907
Noon        0.620892
Evening     0.154582
Midnight    1.326610
dtype: float64

Correlation Coefficient:

>>> df.corr()
           Morning      Noon   Evening  Midnight
Morning   1.000000 -0.698340 -0.190219  0.201034
Noon     -0.698340  1.000000  0.307686  0.359761
Evening  -0.190219  0.307686  1.000000  0.136436
Midnight  0.201034  0.359761  0.136436  1.000000
../../_images/pandas-dataframe-stats-corr.png

Figure 5.23. Correlation Coefficient

5.15.8. Describe

>>> df.describe()
        Morning      Noon   Evening  Midnight
count  7.000000  7.000000  7.000000  7.000000
mean   0.785753 -0.150107  0.534285  0.299148
std    1.671798  0.787967  0.393169  1.151785
min   -2.552990 -1.454366  0.045759 -0.854096
25%    0.328909 -0.591218  0.228556 -0.464674
50%    1.494079  0.121675  0.443863 -0.151357
75%    1.815805  0.405378  0.907262  0.893974
max    2.269755  0.653619  0.978738  2.240893

5.15.9. Examples

>>> import pandas as pd
>>>
>>>
>>> DATA = 'https://python3.info/_static/phones-en.csv'
>>>
>>> df = pd.read_csv(DATA, parse_dates=['date'])
>>> df.drop(columns='index', inplace=True)
date

The date and time of the entry

duration

The duration (in seconds) for each call, the amount of data (in MB) for each data entry, and the number of texts sent (usually 1) for each sms entry

item

A description of the event occurring – can be one of call, sms, or data

month

The billing month that each entry belongs to – of form YYYY-MM

network

The mobile network that was called/texted for each entry

network_type

Whether the number being called was a mobile, international ('world'), voicemail, landline, or other ('special') number.

Source [1]

How many rows the dataset:

>>> df['item'].count()
np.int64(830)

What was the longest phone call / data entry?:

>>> df['duration'].max()
np.float64(10528.0)

How many seconds of phone calls are recorded in total?:

>>> df.loc[ df['item'] == 'call' ]['duration'].sum()
np.float64(92321.0)

How many entries are there for each month?:

>>> df['month'].value_counts()
month
2014-11    230
2015-01    205
2014-12    157
2015-02    137
2015-03    101
Name: count, dtype: int64

Number of non-null unique network entries:

>>> df['network'].nunique()
9

5.15.10. Other

  • .nsmallest()

  • .values()

  • .rank()

5.15.11. References

5.15.12. Assignments

# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author

# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`

# %% About
# - Name: DataFrame Statistics
# - Difficulty: medium
# - Lines: 1
# - Minutes: 2

# %% English
# 1. Save basic descriptive statistics to `result: pd.DataFrame`
# 2. Run doctests - all must succeed

# %% Polish
# 1. Zapisz podstawowe statystyki opisowe do `result: pd.DataFrame`
# 2. Uruchom doctesty - wszystkie muszą się powieść

# %% Hints
# - `DataFrame.describe()`

# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'

>>> pd.set_option('display.width', 500)
>>> pd.set_option('display.max_columns', 10)
>>> pd.set_option('display.max_rows', 10)

>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.DataFrame, \
'Variable `result` must be a `pd.DataFrame` type'

>>> result  # doctest: +NORMALIZE_WHITESPACE
            mileage  consumption
count      50.00000    50.000000
mean   110421.02000     9.320000
std     53170.24328     6.244802
min      7877.00000     0.000000
25%     71239.75000     4.000000
50%    115186.00000     9.000000
75%    154889.00000    14.750000
max    199827.00000    20.000000
"""

import pandas as pd
import numpy as np
np.random.seed(0)


df = pd.DataFrame({
    'mileage': np.random.randint(0, 200_000, size=50),
    'consumption': np.random.randint(0, 21, size=50),
})


# Save basic descriptive statistics to `result: pd.DataFrame`
# type: pd.DataFrame
result = ...