5.4. DataFrame Sample

  • .sample(n=5)

  • .sample(n=5, replace=True)

  • .sample(frac=.5)

  • .sample(frac=1/2)

  • .head(n=5)

  • .tail(n=5)

  • .first('5D') - works only on time series

  • .last('5D') - works only on time series

  • .reset_index(drop=True)

5.4.1. SetUp

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(0)
>>>
>>>
>>> df = pd.DataFrame(
...     columns = ['Morning', 'Noon', 'Evening', 'Midnight'],
...     index = pd.date_range('1999-12-30', periods=7),
...     data = np.random.randn(7, 4))
>>>
>>> df
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.4.3. Tail

>>> df.tail(2)
             Morning      Noon   Evening  Midnight
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.tail(n=1)
             Morning      Noon   Evening  Midnight
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.4.4. First

>>> df.first('YE')
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
>>> df.first('ME')
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
>>> df.first('D')
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
>>> df.first('W')
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674

5.4.5. Last

>>> df.last('YE')
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.last('ME')
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.last('D')
             Morning      Noon   Evening  Midnight
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.last('W')
             Morning      Noon   Evening  Midnight
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.4.6. Sample

  • 1/4 is 25%

  • .05 is 5%

  • 0.5 is 50%

  • 1.0 is 100%

>>> np.random.seed(0)

n number or fraction random rows with and without repetition:

>>> df.sample()
             Morning      Noon   Evening  Midnight
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.sample(2)
             Morning      Noon   Evening  Midnight
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
1999-12-30  1.764052  0.400157  0.978738  2.240893
>>> df.sample(n=2, replace=True)
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
>>> df.sample(frac=1/4)
             Morning      Noon   Evening  Midnight
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.sample(frac=0.5)
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.4.7. Reset Index

>>> np.random.seed(0)
>>> df.sample(frac=1.0).reset_index()
       index   Morning      Noon   Evening  Midnight
0 2000-01-05  2.269755 -1.454366  0.045759 -0.187184
1 2000-01-01 -0.103219  0.410599  0.144044  1.454274
2 1999-12-31  1.867558 -0.977278  0.950088 -0.151357
3 2000-01-02  0.761038  0.121675  0.443863  0.333674
4 1999-12-30  1.764052  0.400157  0.978738  2.240893
5 2000-01-04 -2.552990  0.653619  0.864436 -0.742165
6 2000-01-03  1.494079 -0.205158  0.313068 -0.854096
>>> DATA = [
...     {'sepal_length': 5.4, 'sepal_width': 3.9, 'petal_length': 1.3, 'petal_width': 0.4, 'species': 'setosa'},
...     {'sepal_length': 5.9, 'sepal_width': 3.0, 'petal_length': 5.1, 'petal_width': 1.8, 'species': 'virginica'},
...     {'sepal_length': 6.0, 'sepal_width': 3.4, 'petal_length': 4.5, 'petal_width': 1.6, 'species': 'versicolor'},
...     {'sepal_length': 7.3, 'sepal_width': 2.9, 'petal_length': 6.3, 'petal_width': 1.8, 'species': 'virginica'},
...     {'sepal_length': 5.6, 'sepal_width': 2.5, 'petal_length': 3.9, 'petal_width': 1.1, 'species': 'versicolor'},
...     {'sepal_length': 5.4, 'sepal_width': 3.9, 'petal_length': 1.3, 'petal_width': 0.4, 'species': 'setosa'},
... ]
>>>
>>>
>>> df = pd.DataFrame(DATA)
>>>
>>> np.random.seed(0)
>>> selected = df.sample(frac=1/2)
>>> selected
   sepal_length  sepal_width  petal_length  petal_width     species
5           5.4          3.9           1.3          0.4      setosa
2           6.0          3.4           4.5          1.6  versicolor
1           5.9          3.0           5.1          1.8   virginica
>>>
>>> selected.reset_index()
   index  sepal_length  sepal_width  petal_length  petal_width     species
0      5           5.4          3.9           1.3          0.4      setosa
1      2           6.0          3.4           4.5          1.6  versicolor
2      1           5.9          3.0           5.1          1.8   virginica
>>>
>>> selected.reset_index(drop=True)
   sepal_length  sepal_width  petal_length  petal_width     species
0           5.4          3.9           1.3          0.4      setosa
1           6.0          3.4           4.5          1.6  versicolor
2           5.9          3.0           5.1          1.8   virginica

5.4.8. Assignments

# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author

# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`

# %% About
# - Name: DataFrame Sample
# - Difficulty: easy
# - Lines: 4
# - Minutes: 5

# %% English
# 1. Read data from `DATA` as `df: pd.DataFrame`
# 2. Set all rows in random order
# 3. Reset index without leaving a backup of the old one
# 4. Define `result` with last 10 rows
# 5. Run doctests - all must succeed

# %% Polish
# 1. Wczytaj dane z `DATA` jako `df: pd.DataFrame`
# 2. Ustaw wszystkie wiersze w losowej kolejności
# 3. Zresetuj index nie pozostawiając kopii zapasowej starego
# 4. Zdefiniuj `result` z ostatnimi 10 wierszami
# 5. Uruchom doctesty - wszystkie muszą się powieść

# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'

>>> pd.set_option('display.width', 500)
>>> pd.set_option('display.max_columns', 10)
>>> pd.set_option('display.max_rows', 10)

>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.DataFrame, \
'Variable `result` must be a `pd.DataFrame` type'

>>> result  # doctest: +NORMALIZE_WHITESPACE
                       Name        Country Gender                                            Flights  Total Flights Total Flight Time (ddd:hh:mm)
557  Thomas Marshburn, M.D.  United States    Man               STS-127 (2009), Soyuz TMA-07M (2012)              2                     161:07:03
558           Michael Baker  United States    Man  STS-43 (1991), STS-52 (1992), STS-68 (1994), S...              4                     040:03:04
559            Rick Husband  United States    Man                      STS-96 (1999), STS-107 (2003)              2                     025:13:33
560     Svetlana Savitskaya   Soviet Union  Woman                Soyuz T-7 (1982), Soyuz T-12 (1984)              2                     019:17:07
561   Charles "Pete" Conrad  United States    Man  Gemini 5 (1965), Gemini 11 (1966), Apollo 12 (...              4                     049:03:38
562     Lawrence J. DeLucas  United States    Man                                      STS-50 (1992)              1                     013:19:30
563      Aleksandr Laveykin   Soviet Union    Man                                  Soyuz TM-2 (1987)              1                     174:03:25
564           Owen Garriott  United States    Man                      Skylab 3 (1973), STS-9 (1983)              2                     069:17:56
565             Ivan Vagner         Russia    Man                                 Soyuz MS-16 (2020)              1                     145:04:14
566        Yuri Malenchenko         Russia    Man  Soyuz TM-19 (1994), STS-106 (2000), Soyuz TMA-...              6                     826:09:22
"""

import pandas as pd
import numpy as np
np.random.seed(0)


DATA = 'https://python3.info/_static/astro-database.csv'

# type: pd.DataFrame
result = ...


# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author

# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`

# %% About
# - Name: DataFrame Sample
# - Difficulty: easy
# - Lines: 5
# - Minutes: 5

# %% English
# 1. Read data from `DATA` as `df: pd.DataFrame`
# 2. In data column "Order":
#    - determines the order of the astronaut/cosmonaut in space
#    - Sometimes several people flew on the same ship and their numbers should be the same, and in the data there is `NaN`.
#    - Fill in the missing indexes using `df.ffill()`
# 3. Set all rows in random order
# 4. Reset index without leaving a backup copy of the old one
# 5. Run doctests - all must succeed

# %% Polish
# 1. Wczytaj dane z `DATA` jako `df: pd.DataFrame`
# 2. W danych kolumna "Order":
#    - określa kolejność astronauty/kosmonauty w kosmosie
#    - Czasami kilka osób leciało tym samym statkiem i ich numery powinny być takie same, a w danych jest `NaN`.
#    - Wypełnij brakujące indeksy stosując `df.ffill()`
# 3. Ustaw wszystkie wiersze w losowej kolejności
# 4. Zresetuj index nie pozostawiając kopii zapasowej starego
# 5. Uruchom doctesty - wszystkie muszą się powieść

# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'

>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.DataFrame, \
'Variable `result` must be a `pd.DataFrame` type'

>>> pd.set_option('display.width', 500)
>>> pd.set_option('display.max_columns', 10)
>>> pd.set_option('display.max_rows', 10)

>>> result  # doctest: +NORMALIZE_WHITESPACE
     Order            Astronaut     Type              Date   Spacecraft
0      244     Donald McMonagle  Orbital     28 April 1991       STS-39
1       93        Georgi Ivanov  Orbital     10 April 1979     Soyuz 33
2      387         Rick Husband  Orbital       27 May 1999       STS-96
3      185       William Pailes  Orbital    3 October 1985         51-J
4      390        Jeffrey Ashby  Orbital      23 July 1999       STS-93
..     ...                  ...      ...               ...          ...
578    277       Franco Malerba  Orbital      31 July 1992       STS-46
579     10         Leroy Cooper  Orbital       15 May 1963      Faith 7
580    359       Carlos Noriega  Orbital       15 May 1997       STS-84
581    192    Rodolfo Neri Vela  Orbital  27 November 1985         61-B
582    559  David Saint-Jacques  Orbital   3 December 2018  Soyuz MS-11
<BLANKLINE>
[583 rows x 5 columns]
"""

import pandas as pd
import numpy as np
np.random.seed(0)


DATA = 'https://python3.info/_static/astro-order.csv'

# type: pd.DataFrame
result = ...