5.8. DataFrame Loc

  • .loc[] - uses fancy indexing, start and stop are included!!

  • .iloc[] - only index numbers, behaves like Python slices

../../_images/pandas-dataframe-select-row.png

Figure 5.15. Pandas Select Row

../../_images/pandas-dataframe-select-column.png

Figure 5.16. Pandas Select Cell

5.8.1. SetUp

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(0)
>>>
>>>
>>> df = pd.DataFrame(
...     columns = ['Morning', 'Noon', 'Evening', 'Midnight'],
...     index = pd.date_range('1999-12-30', periods=7),
...     data = np.random.randn(7, 4))
>>>
>>> df
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.8.2. Single row

  • Returns the row as a pd.Series

>>> df.loc['2000-01-01']
Morning    -0.103219
Noon        0.410599
Evening     0.144044
Midnight    1.454274
Name: 2000-01-01 00:00:00, dtype: float64

5.8.3. Range of rows

  • Returns the rows as a pd.DataFrame

>>> df.loc['2000-01-02':'2000-01-04']
             Morning      Noon   Evening  Midnight
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165

5.8.4. Range of dates

>>> df.loc['2000-01']
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>> df.loc['1999']
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357

5.8.5. Values in Selected Columns

  • Note that both the start and stop of the slice are included

Single row and single column:

>>> df.loc['2000-01-05', 'Morning']
np.float64(2.2697546239876076)

Range of rows and single column:

>>> df.loc['1999-12-31':'2000-01-02', 'Noon']
1999-12-31   -0.977278
2000-01-01    0.410599
2000-01-02    0.121675
Freq: D, Name: Noon, dtype: float64

Range of rows and single column:

>>> df.loc[['2000-01-02','2000-01-04'], 'Noon']
2000-01-02    0.121675
2000-01-04    0.653619
Name: Noon, dtype: float64

Single row and selected columns:

>>> df.loc['2000-01-05', ['Noon', 'Midnight']]
Noon       -1.454366
Midnight   -0.187184
Name: 2000-01-05 00:00:00, dtype: float64

Single row and column range:

>>> df.loc['2000-01-05', 'Noon':'Midnight']
Noon       -1.454366
Evening     0.045759
Midnight   -0.187184
Name: 2000-01-05 00:00:00, dtype: float64

5.8.6. Fancy Indexing

  • Return row for given index is True

Boolean list with the same length as the row axis:

>>> df.loc[[True, False, True, False, False, False, True]]
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

Conditional that returns a boolean Series:

>>> df.loc[df['Morning'] < 0]
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-04 -2.552990  0.653619  0.864436 -0.742165

Conditional that returns a boolean Series with column labels specified:

>>> df.loc[df['Morning'] < 0, 'Evening']
2000-01-01    0.144044
2000-01-04    0.864436
Freq: 3D, Name: Evening, dtype: float64
>>> df.loc[df['Morning'] < 0, ['Morning', 'Evening']]
             Morning   Evening
2000-01-01 -0.103219  0.144044
2000-01-04 -2.552990  0.864436
>>> where = df['Morning'] < 0
>>>
>>> df.loc[where, ['Morning', 'Evening']]
             Morning   Evening
2000-01-01 -0.103219  0.144044
2000-01-04 -2.552990  0.864436
>>> where = df['Morning'] < 0
>>> select = ['Morning', 'Evening']
>>>
>>> df.loc[where, select]
             Morning   Evening
2000-01-01 -0.103219  0.144044
2000-01-04 -2.552990  0.864436

5.8.7. Callable

Filtering with callable:

>>> def morning_below_zero(df):
...     return df['Morning'] < 0
>>>
>>> df.loc[morning_below_zero]
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
>>> df.loc[lambda df: df['Morning'] < 0]
             Morning      Noon   Evening  Midnight
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-04 -2.552990  0.653619  0.864436 -0.742165

5.8.8. Setting Values

Set value for all items matching the list of labels:

>>> df.loc[df['Morning'] < 0, 'Evening'] = np.inf
>>> df
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599       inf  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619       inf -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

Set value for an entire row:

>>> df.loc['2000-01-01'] = np.nan
>>> df
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01       NaN       NaN       NaN       NaN
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619       inf -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

Set value for an entire column:

>>> df.loc[:, 'Evening'] = 0.0
>>> df
             Morning      Noon  Evening  Midnight
1999-12-30  1.764052  0.400157      0.0  2.240893
1999-12-31  1.867558 -0.977278      0.0 -0.151357
2000-01-01       NaN       NaN      0.0       NaN
2000-01-02  0.761038  0.121675      0.0  0.333674
2000-01-03  1.494079 -0.205158      0.0 -0.854096
2000-01-04 -2.552990  0.653619      0.0 -0.742165
2000-01-05  2.269755 -1.454366      0.0 -0.187184

Set value for rows matching callable condition:

>>> df[df < 0] = -np.inf
>>> df
             Morning      Noon  Evening  Midnight
1999-12-30  1.764052  0.400157      0.0  2.240893
1999-12-31  1.867558      -inf      0.0      -inf
2000-01-01       NaN       NaN      0.0       NaN
2000-01-02  0.761038  0.121675      0.0  0.333674
2000-01-03  1.494079      -inf      0.0      -inf
2000-01-04      -inf  0.653619      0.0      -inf
2000-01-05  2.269755      -inf      0.0      -inf