5.2. DataFrame Attributes

  • df.columns

  • df.index

  • df.values

5.2.1. SetUp

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(0)
>>>
>>>
>>> df = pd.DataFrame(
...     columns = ['Morning', 'Noon', 'Evening', 'Midnight'],
...     index = pd.date_range('1999-12-30', periods=7),
...     data = np.random.randn(7, 4))
>>>
>>> df
             Morning      Noon   Evening  Midnight
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184

5.2.2. Columns

Get column names:

>>> df.columns
Index(['Morning', 'Noon', 'Evening', 'Midnight'], dtype='object')

Set column names:

>>> df.columns = ['A', 'B', 'C', 'D']
>>> df
                   A         B         C         D
1999-12-30  1.764052  0.400157  0.978738  2.240893
1999-12-31  1.867558 -0.977278  0.950088 -0.151357
2000-01-01 -0.103219  0.410599  0.144044  1.454274
2000-01-02  0.761038  0.121675  0.443863  0.333674
2000-01-03  1.494079 -0.205158  0.313068 -0.854096
2000-01-04 -2.552990  0.653619  0.864436 -0.742165
2000-01-05  2.269755 -1.454366  0.045759 -0.187184
>>>
>>> df.columns
Index(['A', 'B', 'C', 'D'], dtype='object')

5.2.3. Indexes

Get index:

>>> df.index
DatetimeIndex(['1999-12-30', '1999-12-31', '2000-01-01', '2000-01-02',
               '2000-01-03', '2000-01-04', '2000-01-05'],
              dtype='datetime64[ns]', freq='D')

Set index:

>>> df.index = [0, 1, 2, 3, 4, 5, 6]
>>> df
          A         B         C         D
0  1.764052  0.400157  0.978738  2.240893
1  1.867558 -0.977278  0.950088 -0.151357
2 -0.103219  0.410599  0.144044  1.454274
3  0.761038  0.121675  0.443863  0.333674
4  1.494079 -0.205158  0.313068 -0.854096
5 -2.552990  0.653619  0.864436 -0.742165
6  2.269755 -1.454366  0.045759 -0.187184
>>>
>>> df.index
Index([0, 1, 2, 3, 4, 5, 6], dtype='int64')

5.2.4. Values

Get values:

>>> df.values
array([[ 1.76405235,  0.40015721,  0.97873798,  2.2408932 ],
       [ 1.86755799, -0.97727788,  0.95008842, -0.15135721],
       [-0.10321885,  0.4105985 ,  0.14404357,  1.45427351],
       [ 0.76103773,  0.12167502,  0.44386323,  0.33367433],
       [ 1.49407907, -0.20515826,  0.3130677 , -0.85409574],
       [-2.55298982,  0.6536186 ,  0.8644362 , -0.74216502],
       [ 2.26975462, -1.45436567,  0.04575852, -0.18718385]])

You cannot modify values:

>>> values = np.zeros_like(df.values)
>>> values
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])
>>>
>>> df.values = values
Traceback (most recent call last):
AttributeError: property 'values' of 'DataFrame' object has no setter

5.2.5. Assignments