4.8. Series Slice
4.8.1. SetUp
>>> import pandas as pd
4.8.2. Numeric Index
Series[] is used to slice the series
Series.iloc[] can be used to slice the series using numeric index
Using numeric index upper bound is exclusive!
Numeric indexes has also string index underneath
SetUp:
>>> s = pd.Series(
... data=[1.0, 2.0, 3.0, 4.0, 5.0],
... index=[0, 1, 2, 3, 4],
... )
>>>
>>> s
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
dtype: float64
First two elements:
>>> s.loc[:2]
0 1.0
1 2.0
2 3.0
dtype: float64
Last two elements:
>>> s.loc[2:]
2 3.0
3 4.0
4 5.0
dtype: float64
All (starting from 1), but two last elements:
>>> s.loc[1:-2]
Series([], dtype: float64)
Every second element:
>>> s.loc[::2]
0 1.0
2 3.0
4 5.0
dtype: float64
Every second element starting from the second (element with index 1, mind, that computers starts counting with 0):
>>> s.loc[1::2]
1 2.0
3 4.0
dtype: float64
4.8.3. String Index
Series[] is used to slice the series
Series.loc[] can be used to slice the series using string index
Using string index upper and lower bound are inclusive!
String indexes has also numeric index underneath
>>> s = pd.Series(
... data=[1.0, 2.0, 3.0, 4.0, 5.0],
... index=['a', 'b', 'c', 'd', 'e'],
... )
>>>
>>> s
a 1.0
b 2.0
c 3.0
d 4.0
e 5.0
dtype: float64
>>>
>>> s.loc['a':'d']
a 1.0
b 2.0
c 3.0
d 4.0
dtype: float64
>>>
>>> s.loc['a':'d':2]
a 1.0
c 3.0
dtype: float64
>>>
>>> s.loc['a':'d':'b']
Traceback (most recent call last):
TypeError: '>=' not supported between instances of 'str' and 'int'
>>>
>>> s.loc['d':'a']
Series([], dtype: float64)
>>> s = pd.Series(
... data = [1.0, 2.0, 3.0, 4.0, 5.0],
... index = ['aaa', 'bbb', 'ccc', 'ddd', 'eee'])
>>>
>>> s
aaa 1.0
bbb 2.0
ccc 3.0
ddd 4.0
eee 5.0
dtype: float64
>>>
>>> s.loc['a':'b']
aaa 1.0
dtype: float64
>>>
>>> s.loc['a':'c']
aaa 1.0
bbb 2.0
dtype: float64
4.8.4. Date Index
Series[] can be used to slice the series using date index
Series.loc[] can be used to slice the series using date index
Using date index upper and lower bound are inclusive!
Date indexes has also numeric index underneath
>>> s = pd.Series(
... data = [1.0, 2.0, 3.0, 4.0, 5.0],
... index = pd.date_range('1999-12-30', periods=5))
>>>
>>> s
1999-12-30 1.0
1999-12-31 2.0
2000-01-01 3.0
2000-01-02 4.0
2000-01-03 5.0
Freq: D, dtype: float64
>>> s.loc['2000-01-02':'2000-01-04']
2000-01-02 4.0
2000-01-03 5.0
Freq: D, dtype: float64
>>> s.loc['1999-12-30':'2000-01-04':2]
1999-12-30 1.0
2000-01-01 3.0
2000-01-03 5.0
Freq: 2D, dtype: float64
>>> s.loc['1999-12-30':'2000-01-04':-1]
Series([], Freq: -1D, dtype: float64)
>>> s.loc['2000-01-04':'1999-12-30':-1]
2000-01-03 5.0
2000-01-02 4.0
2000-01-01 3.0
1999-12-31 2.0
1999-12-30 1.0
Freq: -1D, dtype: float64
>>> s.loc[:'1999']
1999-12-30 1.0
1999-12-31 2.0
Freq: D, dtype: float64
>>> s.loc['2000':]
2000-01-01 3.0
2000-01-02 4.0
2000-01-03 5.0
Freq: D, dtype: float64
>>> s.loc[:'1999-12']
1999-12-30 1.0
1999-12-31 2.0
Freq: D, dtype: float64
>>> s.loc['2000-01':]
2000-01-01 3.0
2000-01-02 4.0
2000-01-03 5.0
Freq: D, dtype: float64
>>> s.loc[:'2000-01-02']
1999-12-30 1.0
1999-12-31 2.0
2000-01-01 3.0
2000-01-02 4.0
Freq: D, dtype: float64
>>> s.loc['2000-01-02':]
2000-01-02 4.0
2000-01-03 5.0
Freq: D, dtype: float64
>>> s.loc['1999-12':'1999-12']
1999-12-30 1.0
1999-12-31 2.0
Freq: D, dtype: float64
>>> s.loc['2000-01':'2000-01-05']
2000-01-01 3.0
2000-01-02 4.0
2000-01-03 5.0
Freq: D, dtype: float64
>>> s.loc[:'2000-01-05':2]
1999-12-30 1.0
2000-01-01 3.0
2000-01-03 5.0
Freq: 2D, dtype: float64
>>> s.loc[:'2000-01-03':-1]
2000-01-03 5.0
Freq: -1D, dtype: float64
4.8.5. Assignments
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Series Slice Datetime
# - Difficulty: easy
# - Lines: 1
# - Minutes: 3
# %% English
# 1. Given is `s: pd.Series` with dates since 2000
# 2. Define `result: pd.Series` with values for dates between 2000-02-14 and end of February 2000
# 3. Run doctests - all must succeed
# %% Polish
# 1. Dany jest `s: pd.Series` z datami od 2000 roku
# 2. Zdefiniuj `result: pd.Series` z wartościami pomiędzy datami od 2000-02-14 do końca lutego 2000
# 3. Uruchom doctesty - wszystkie muszą się powieść
# %% Hints
# - `pd.Series.loc[]`
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> pd.set_option('display.width', 500)
>>> pd.set_option('display.max_columns', 10)
>>> pd.set_option('display.max_rows', 10)
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.Series, \
'Variable `result` has invalid type, should be `pd.Series`'
>>> result # doctest: +NORMALIZE_WHITESPACE
2000-02-14 -0.509652
2000-02-15 -0.438074
2000-02-16 -1.252795
2000-02-17 0.777490
2000-02-18 -1.613898
...
2000-02-25 0.428332
2000-02-26 0.066517
2000-02-27 0.302472
2000-02-28 -0.634322
2000-02-29 -0.362741
Freq: D, Length: 16, dtype: float64
"""
import pandas as pd
import numpy as np
np.random.seed(0)
s = pd.Series(
data=np.random.randn(100),
index=pd.date_range('2000-01-01', freq='D', periods=100))
# Define `result: pd.Series` with values for
# dates between 2000-02-14 and end of February 2000
# type: pd.Series
result = ...
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Slicing Slice Str
# - Difficulty: easy
# - Lines: 2
# - Minutes: 5
# %% English
# 1. Find middle element `s: pd.Series`
# 2. Slice from series 5 elements:
# - two elements before middle
# - one middle element
# - two elements after middle
# 3. Run doctests - all must succeed
# %% Polish
# 1. Znajdź środkowy element `s: pd.Series`
# 2. Wytnij z serii 5 elementów:
# - dwa elementy przed środkowym
# - jeden środkowy element
# - dwa elementy za środkowym
# 3. Uruchom doctesty - wszystkie muszą się powieść
# %% Hints
# - `pd.Series.iloc[]`
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.Series, \
'Variable `result` has invalid type, should be `pd.Series`'
>>> result
l 98
m 98
n 22
o 68
p 75
dtype: int64
"""
import pandas as pd
import numpy as np
np.random.seed(0)
s = pd.Series(
data=np.random.randint(10, 100, size=26),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u',
'v', 'w', 'x', 'y', 'z']
)
# type: pd.Series
result = ...