4.9. Series NA

4.9.1. SetUp

>>> import pandas as pd
>>> import numpy as np

4.9.2. Boolean Value

>>> bool(None)
False
>>> bool(float('nan'))
True
>>> bool(np.nan)
True
>>> bool(pd.NA)
Traceback (most recent call last):
TypeError: boolean value of NA is ambiguous

4.9.3. Type

>>> pd.Series([1, None, 3]).dtype
dtype('float64')
>>> pd.Series([1.0, None, 3.0]).dtype
dtype('float64')
>>> pd.Series([True, None, False]).dtype
dtype('O')
>>> pd.Series(['a', None, 'c']).dtype
dtype('O')
>>> pd.Series([1, float('nan'), 3]).dtype
dtype('float64')
>>> pd.Series([1.0, float('nan'), 3.0]).dtype
dtype('float64')
>>> pd.Series([True, float('nan'), False]).dtype
dtype('O')
>>> pd.Series(['a', float('nan'), 'c']).dtype
dtype('O')
>>> pd.Series([1, np.nan, 3]).dtype
dtype('float64')
>>> pd.Series([1.0, np.nan, 3.0]).dtype
dtype('float64')
>>> pd.Series([True, np.nan, False]).dtype
dtype('O')
>>> pd.Series(['a', np.nan, 'c']).dtype
dtype('O')
>>> pd.Series([1, pd.NA, 3]).dtype
dtype('O')
>>> pd.Series([1.0, pd.NA, 3.0]).dtype
dtype('O')
>>> pd.Series([True, pd.NA, False]).dtype
dtype('O')
>>> pd.Series(['a', pd.NA, 'c']).dtype
dtype('O')

4.9.4. Comparison

>>> None == None
True
>>> None == float('nan')
False
>>> None == np.nan
False
>>> None == pd.NA
False
>>> float('nan') == None
False
>>> float('nan') == float('nan')
False
>>> float('nan') == np.nan
False
>>> float('nan') == pd.NA
<NA>
>>> np.nan == None
False
>>> np.nan == float('nan')
False
>>> np.nan == np.nan
False
>>> np.nan == pd.NA
<NA>
>>> pd.NA == None
False
>>> pd.NA == float('nan')
<NA>
>>> pd.NA == np.nan
<NA>
>>> pd.NA == pd.NA
<NA>

4.9.5. Identity

>>> None is None
True
>>> None is float('nan')
False
>>> None is np.nan
False
>>> None is pd.NA
False
>>> float('nan') is None
False
>>> float('nan') is float('nan')
False
>>> float('nan') is np.nan
False
>>> float('nan') is pd.NA
False
>>> np.nan is None
False
>>> np.nan is float('nan')
False
>>> np.nan is np.nan
True
>>> np.nan is pd.NA
False
>>> pd.NA is None
False
>>> pd.NA is float('nan')
False
>>> pd.NA is np.nan
False
>>> pd.NA is pd.NA
True

4.9.6. Check

  • Negated ~ versions of all above methods

>>> s = pd.Series([1.0, np.nan, 3.0])
>>> s
0    1.0
1    NaN
2    3.0
dtype: float64
>>> s.any()
np.True_
>>> ~s.any()
np.False_
>>> s.all()
np.True_
>>> ~s.all()
np.False_

4.9.7. Select

  • s.isnull() and s.notnull()

  • s.isna() and s.notna()

  • Negated ~ versions of all above methods

>>> s = pd.Series([1.0, np.nan, 3.0])
>>> s
0    1.0
1    NaN
2    3.0
dtype: float64
>>> s.isnull()
0    False
1     True
2    False
dtype: bool
>>> ~s.isnull()
0     True
1    False
2     True
dtype: bool
>>> s.notnull()
0     True
1    False
2     True
dtype: bool
>>> ~s.notnull()
0    False
1     True
2    False
dtype: bool
>>> s = pd.Series([1.0, np.nan, 3.0])
>>> s
0    1.0
1    NaN
2    3.0
dtype: float64
>>>
>>> s.isna()
0    False
1     True
2    False
dtype: bool
>>>
>>> s.notna()
0     True
1    False
2     True
dtype: bool
>>>
>>> ~s.isna()
0     True
1    False
2     True
dtype: bool
>>>
>>> ~s.notna()
0    False
1     True
2    False
dtype: bool

4.9.8. Update

  • Works with inplace=True parameter.

>>> s = pd.Series([1.0, None, None, 4.0, None, 6.0])
>>> s
0    1.0
1    NaN
2    NaN
3    4.0
4    NaN
5    6.0
dtype: float64

Fill NA - Scalar value:

>>> s.fillna(0.0)
0    1.0
1    0.0
2    0.0
3    4.0
4    0.0
5    6.0
dtype: float64

Forward Fill. ffill: propagate last valid observation forward:

>>> s.ffill()
0    1.0
1    1.0
2    1.0
3    4.0
4    4.0
5    6.0
dtype: float64

Backward Fill. bfill: use NEXT valid observation to fill gap:

>>> s.bfill()
0    1.0
1    4.0
2    4.0
3    4.0
4    6.0
5    6.0
dtype: float64

Interpolate. method: str, default linear, no inplace=True option:

>>> s.interpolate()
0    1.0
1    2.0
2    3.0
3    4.0
4    5.0
5    6.0
dtype: float64

Following method requires installation of scipy library:

>>> s.interpolate('nearest')  
0    1.0
1    1.0
2    4.0
3    4.0
4    4.0
5    6.0
dtype: float64

Following method requires installation of scipy library:

>>> s.interpolate('polynomial', order=2)  
0    1.0
1    2.0
2    3.0
3    4.0
4    5.0
5    6.0
dtype: float64
Table 4.31. Interpolation techniques

Method

Description

linear

Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes

time

Works on daily and higher resolution data to interpolate given length of interval

index, values

use the actual numerical values of the index.

pad

Fill in NA using existing values

nearest, zero, slinear, quadratic, cubic, spline, barycentric, polynomial

Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both polynomial and spline require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=5)

krogh, piecewise_polynomial, spline, pchip, akima

Wrappers around the SciPy interpolation methods of similar names

from_derivatives

Refers to scipy.interpolate.BPoly.from_derivatives which replaces piecewise_polynomial interpolation method in scipy 0.18.

4.9.9. Drop

Drop Rows. Has inplace=True parameter:

>>> s = pd.Series([1.0, None, None, 4.0, None, 6.0])
>>> s
0    1.0
1    NaN
2    NaN
3    4.0
4    NaN
5    6.0
dtype: float64
>>>
>>> s.dropna()
0    1.0
3    4.0
5    6.0
dtype: float64

4.9.10. Conversion

  • If you have a DataFrame or Series using traditional types that have missing data represented using np.nan

  • There are convenience methods convert_dtypes() in Series and DataFrame that can convert data to use the newer dtypes for integers, strings and booleans

  • This is especially helpful after reading in data sets when letting the readers such as read_csv() and read_excel() infer default dtypes.

>>> 
... data = pd.read_csv('data/baseball.csv', index_col='id')
... data[data.columns[:10]].dtypes
player    object
year       int64
stint      int64
team      object
lg        object
g          int64
ab         int64
r          int64
h          int64
X2b        int64
dtype: object
>>> 
... data = pd.read_csv('data/baseball.csv', index_col='id')
... data = data.convert_dtypes()
... data[data.columns[:10]].dtypes
player    string
year       Int64
stint      Int64
team      string
lg        string
g          Int64
ab         Int64
r          Int64
h          Int64
X2b        Int64
dtype: object

4.9.11. Assignments

# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author

# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`

# %% About
# - Name: Series NA
# - Difficulty: easy
# - Lines: 4
# - Minutes: 3

# %% English
# 1. From input data create `pd.Series`
# 2. Fill only first missing value with zero
# 3. Drop missing values
# 4. Reindex series (without old copy)
# 5. Run doctests - all must succeed

# %% Polish
# 1. Z danych wejściowych stwórz `pd.Series`
# 2. Wypełnij tylko pierwszą brakującą wartość zerem
# 3. Usuń brakujące wartości
# 4. Zresetuj indeks (bez kopii starego)
# 5. Uruchom doctesty - wszystkie muszą się powieść

# %% Hints
# - `pd.Series.fillna(limit)`

# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'

>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.Series, \
'Variable `result` has invalid type, should be `pd.Series`'

>>> result
0    1.0
1    0.0
2    5.0
3    1.0
4    2.0
5    1.0
dtype: float64
"""

import pandas as pd

DATA = [1, None, 5, None, 1, 2, 1]

# type: pd.Series
result = ...