4.12. Series Arithmetic
4.12.1. SetUp
>>> import pandas as pd
>>> import numpy as np
4.12.2. Vectorized Operations
s + 2
,s.add(2)
,s.__add__(2)
s - 2
,s.sub(2)
,s.subtract(2)
,s.__sub__(2)
s * 2
,s.mul(2)
,s.multiply(2)
,s.__mul__(2)
s ** 2
,s.pow(2)
,s.__pow__(2)
s ** (1/2)
,s.pow(1/2)
,s.__sub__(1/2)
s / 2
,s.div(2)
,s.divide()
,s.__div__(2)
s // 2
,s.truediv(2)
,s.__truediv__(2)
s % 2
,s.mod(2)
,s.__mod__(2)
divmod(s, 2)
,s.divmod(2)
,s.__divmod__(2)
,(s//2, s%2)
>>> data = pd.Series(
... data = [1.1, 2.2, np.nan, 4.4],
... index = ['a', 'b', 'c', 'd'])
>>> data
a 1.1
b 2.2
c NaN
d 4.4
dtype: float64
>>> data + 2
a 3.1
b 4.2
c NaN
d 6.4
dtype: float64
>>> data ** 2
a 1.21
b 4.84
c NaN
d 19.36
dtype: float64
>>> data ** (1/2)
a 1.048809
b 1.483240
c NaN
d 2.097618
dtype: float64
4.12.3. Assignments
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Series Arithmetic
# - Difficulty: easy
# - Lines: 5
# - Minutes: 3
# %% English
# 1. Define variable `result` with result of
# add 10 to each element of `DATA`
# 2. Do not use `.add()` method
# 3. Run doctests - all must succeed
# %% Polish
# 1. Zdefiniuj zmienną `result` z wynikiem
# dodania 10 to każdego elementu z `DATA`
# 2. Nie używaj metody `.add()`
# 3. Uruchom doctesty - wszystkie muszą się powieść
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.Series, \
'Variable `result` has invalid type, should be `pd.Series`'
>>> result
0 11.0
1 12.0
2 13.0
3 14.0
4 15.0
dtype: float64
"""
import pandas as pd
DATA = pd.Series([1.0, 2.0, 3.0, 4.0, 5.0])
# Add 10 to each element of `DATA`
# Do not use `.add()` method
# type: pd.Series
result = ...
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Series Arithmetic
# - Difficulty: easy
# - Lines: 5
# - Minutes: 3
# %% English
# 1. Define variable `result` with result of
# add 10 to each element of `DATA`
# 2. Use `.add()` method
# 3. Run doctests - all must succeed
# %% Polish
# 1. Zdefiniuj zmienną `result` z wynikiem
# dodania 10 to każdego elementu z `DATA`
# 2. Użyj metodę `.add()`
# 3. Uruchom doctesty - wszystkie muszą się powieść
# %% Hints
# - `Series.add(fill_value)`
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.Series, \
'Variable `result` has invalid type, should be `pd.Series`'
>>> result
0 11.0
1 12.0
2 NaN
3 14.0
4 15.0
dtype: float64
"""
import pandas as pd
DATA = pd.Series([1.0, 2.0, None, 4.0, 5.0])
# Add 10 to each element of `DATA`
# Use `.add()` method
# type: pd.Series
result = ...
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Series Arithmetic
# - Difficulty: easy
# - Lines: 5
# - Minutes: 3
# %% English
# 1. Define variable `result` with result of
# add 10 to each element of `DATA`
# if value is not-a-number then treat it as zero
# 2. Use `.add()` method
# 3. Run doctests - all must succeed
# %% Polish
# 1. Zdefiniuj zmienną `result` z wynikiem
# dodania 10 to każdego elementu z `DATA`
# jeżeli wartość nie jest liczbą, to potraktuj ją jak zero
# 2. Użyj metodę `.add()`
# 3. Uruchom doctesty - wszystkie muszą się powieść
# %% Hints
# - `Series.add(fill_value)`
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is pd.Series, \
'Variable `result` has invalid type, should be `pd.Series`'
>>> result
0 11.0
1 12.0
2 10.0
3 14.0
4 15.0
dtype: float64
"""
import pandas as pd
DATA = pd.Series([1.0, 2.0, None, 4.0, 5.0])
# Add 10 to each element of `DATA`
# If value is not-a-number then treat it as zero
# Use `.add()` method
# type: pd.Series
result = ...