8.50. SQLAlchemy Func Numeric

  • array_agg - Support for the ARRAY_AGG function

  • count - The ANSI COUNT aggregate function. With no arguments, emits COUNT *

  • cube - Implement the CUBE grouping operation

  • cume_dist - Implement the cume_dist hypothetical-set aggregate function

  • dense_rank - Implement the dense_rank hypothetical-set aggregate function

  • max - The SQL MAX() aggregate function

  • min - The SQL MIN() aggregate function

  • mode - Implement the mode ordered-set aggregate function

  • percent_rank - Implement the percent_rank hypothetical-set aggregate function

  • percentile_cont - Implement the percentile_cont ordered-set aggregate function

  • percentile_disc - Implement the percentile_disc ordered-set aggregate function

  • random - The RANDOM() SQL function

  • rank - Implement the rank hypothetical-set aggregate function

  • sum - The SQL SUM() aggregate function

8.50.1. About

Table 8.19. SQL and Generic Functions

Object

Name Description

array_agg

Support for the ARRAY_AGG function

count

The ANSI COUNT aggregate function. With no arguments, emits COUNT *

cube

Implement the CUBE grouping operation

cume_dist

Implement the cume_dist hypothetical-set aggregate function

dense_rank

Implement the dense_rank hypothetical-set aggregate function

max

The SQL MAX() aggregate function

min

The SQL MIN() aggregate function

mode

Implement the mode ordered-set aggregate function

percent_rank

Implement the percent_rank hypothetical-set aggregate function

percentile_cont

Implement the percentile_cont ordered-set aggregate function

percentile_disc

Implement the percentile_disc ordered-set aggregate function

random

The RANDOM() SQL function

rank

Implement the rank hypothetical-set aggregate function

sum

The SQL SUM() aggregate function

8.50.2. Count

>>> from sqlalchemy import func
>>> from sqlalchemy import distinct

Count User records, without sing a subquery:

>>> session.query(func.count(User.id))  

Return count of user 'id' grouped by 'name':

>>> session.query(func.count(User.id)).\
...         group_by(User.name)  

Count distinct 'name' values:

>>> session.query(func.count(distinct(User.name)))