5.2. Indexing Slice
>>>
... a[ 0 ] # int
... a[ [0,1] ] # list[int]
... a[ [True,False] ] # list[bool]
... a[ [[True,False], [True,False]] ] # list[list[bool]]
... a[ 0:1 ] # slice(start,stop)
... a[ 0:1:2 ] # slice(start,stop,step)
...
... a[ 0,1 ] # tuple[int]
... a[ (0,1) ] # tuple[int]
... a[ [0,1], [2,3] ] # tuple[list[int]]
... a[ :,: ] # tuple[slice]
... a[ [True,False], [False,True] ] # tuple[list[bool]]
1-dimensional Array:
int
list[int]
list[bool]
list[list[bool]]
slice(start,stop)
slice(start,stop,step)
2-dimensional Array:
tuple[int]
tuple[list[int]]
tuple[slice]
tuple[list[bool]]
5.2.1. SetUp
>>> import numpy as np
5.2.2. Recap
slice(start:stop:step)
data[start:stop:step]
By default
start=0
By default
stop=len(data)
By default
step=1
>>> data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> data[1:5:2] # slice(start=1, stop=5, step=2)
array([2, 4])
>>> data[:5:2] # slice(start=0, stop=5, step=2)
array([1, 3, 5])
>>> data[1::2] # slice(start=1, stop=len(data), step = 2)
array([2, 4, 6, 8])
>>> data[1:5] # slice(start=1, stop=5, step=1)
array([2, 3, 4, 5])
>>> data[::2] # slice(start=0, stop=len(data), step=2)
array([1, 3, 5, 7, 9])
>>> data[:] # slice(start=0, stop=len(data), step=1)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
5.2.3. 1-dimensional Array
>>> import numpy as np
1-dimensional Array:
>>> a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>
>>> a[1:5]
array([2, 3, 4, 5])
>>> a[3:8]
array([4, 5, 6, 7, 8])
>>>
>>> a[0:5]
array([1, 2, 3, 4, 5])
>>> a[:5]
array([1, 2, 3, 4, 5])
>>> a[5:9]
array([6, 7, 8, 9])
>>>
>>> a[5:len(a)]
array([6, 7, 8, 9])
>>> a[5:]
array([6, 7, 8, 9])
>>> a[-2:]
array([8, 9])
>>> a[-5:]
array([5, 6, 7, 8, 9])
>>> a[-6:-2]
array([4, 5, 6, 7])
>>>
>>> a[3:8:2]
array([4, 6, 8])
>>> a[-8:-3:2]
array([2, 4, 6])
>>> a[::2]
array([1, 3, 5, 7, 9])
>>> a[1::2]
array([2, 4, 6, 8])
>>>
>>> a[0:len(a)]
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[0:]
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[:len(a)]
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[:]
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
5.2.4. 2-dimensional Array
>>> import numpy as np
Rows:
>>> a = np.array([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]])
>>>
>>> a[:]
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>>
>>> a[1:]
array([[4, 5, 6],
[7, 8, 9]])
>>>
>>> a[:1]
array([[1, 2, 3]])
>>>
>>> a[1:3]
array([[4, 5, 6],
[7, 8, 9]])
>>>
>>> a[::2]
array([[1, 2, 3],
[7, 8, 9]])
>>>
>>> a[1::2]
array([[4, 5, 6]])
Columns:
>>> a = np.array([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]])
>>>
>>> a[:, 0]
array([1, 4, 7])
>>>
>>> a[:, 1]
array([2, 5, 8])
>>>
>>> a[:, 2]
array([3, 6, 9])
>>>
>>> a[:, -1]
array([3, 6, 9])
>>>
>>> a[:, 0:1]
array([[1],
[4],
[7]])
>>>
>>> a[:, 0:2]
array([[1, 2],
[4, 5],
[7, 8]])
>>>
>>> a[:, :2]
array([[1, 2],
[4, 5],
[7, 8]])
>>>
>>> a[:, ::2]
array([[1, 3],
[4, 6],
[7, 9]])
>>>
>>> a[:, 1::2]
array([[2],
[5],
[8]])
Rows and Columns:
>>> a = np.array([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]])
>>>
>>> a[0:1, 0:1]
array([[1]])
>>>
>>> a[0:1, 0:2]
array([[1, 2]])
>>>
>>> a[0:1, 0:3]
array([[1, 2, 3]])
>>>
>>> a[0:2, 0:2]
array([[1, 2],
[4, 5]])
>>>
>>> a[-1:, -2:]
array([[8, 9]])
>>>
>>> a[::2, ::2]
array([[1, 3],
[7, 9]])
>>>
>>> a[1::2, 1::2]
array([[5]])
>>>
>>> a[[2,1], ::2]
array([[7, 9],
[4, 6]])
5.2.5. Assignments
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Numpy Slice 1
# - Difficulty: easy
# - Lines: 3
# - Minutes: 3
# %% English
# 1. Print inner 2x2 elements
# 2. Run doctests - all must succeed
# %% Polish
# 1. Wybierz wewnętrzne 2x2 elementy
# 2. Uruchom doctesty - wszystkie muszą się powieść
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is np.ndarray, \
'Variable `result` has invalid type, expected: np.ndarray'
>>> result
array([[8, 4],
[5, 2]])
"""
import numpy as np
DATA = np.array([
[2, 8, 1, 5],
[8, 8, 4, 4],
[5, 5, 2, 5],
[1, 0, 6, 0],
])
result = ...
# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author
# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`
# %% About
# - Name: Numpy Slice 2
# - Difficulty: easy
# - Lines: 3
# - Minutes: 3
# %% English
# 1. Print inner 4x4 elements
# 2. Inner matrix is exactly in the middle of outer
# 3. Run doctests - all must succeed
# %% Polish
# 1. Wypisz środkowe 4x4 elementy
# 2. Środkowa macierz jest dokładnie w środku większej
# 3. Uruchom doctesty - wszystkie muszą się powieść
# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is np.ndarray, \
'Variable `result` has invalid type, expected: np.ndarray'
>>> result
array([[2, 0, 7, 5],
[1, 2, 9, 1],
[8, 8, 8, 2],
[4, 3, 6, 9]])
"""
import numpy as np
DATA = np.array([[5, 0, 3, 3, 7, 9, 3, 5, 2, 4, 7, 6, 8, 8, 1, 6],
[7, 7, 8, 1, 5, 9, 8, 9, 4, 3, 0, 3, 5, 0, 2, 3],
[8, 1, 3, 3, 3, 7, 0, 1, 9, 9, 0, 4, 7, 3, 2, 7],
[2, 0, 0, 4, 5, 5, 6, 8, 4, 1, 4, 9, 8, 1, 1, 7],
[9, 9, 3, 6, 7, 2, 0, 3, 5, 9, 4, 4, 6, 4, 4, 3],
[4, 4, 8, 4, 3, 7, 5, 5, 0, 1, 5, 9, 3, 0, 5, 0],
[1, 2, 4, 2, 0, 3, 2, 0, 7, 5, 9, 0, 2, 7, 2, 9],
[2, 3, 3, 2, 3, 4, 1, 2, 9, 1, 4, 6, 8, 2, 3, 0],
[0, 6, 0, 6, 3, 3, 8, 8, 8, 2, 3, 2, 0, 8, 8, 3],
[8, 2, 8, 4, 3, 0, 4, 3, 6, 9, 8, 0, 8, 5, 9, 0],
[9, 6, 5, 3, 1, 8, 0, 4, 9, 6, 5, 7, 8, 8, 9, 2],
[8, 6, 6, 9, 1, 6, 8, 8, 3, 2, 3, 6, 3, 6, 5, 7],
[0, 8, 4, 6, 5, 8, 2, 3, 9, 7, 5, 3, 4, 5, 3, 3],
[7, 9, 9, 9, 7, 3, 2, 3, 9, 7, 7, 5, 1, 2, 2, 8],
[1, 5, 8, 4, 0, 2, 5, 5, 0, 8, 1, 1, 0, 3, 8, 8],
[4, 4, 0, 9, 3, 7, 3, 2, 1, 1, 2, 1, 4, 2, 5, 5]])
result = ...