1.9. About Workflow

../../_images/pandas-about-workflow.png

1.9.1. SetUp

>>> import pandas as pd
>>> import numpy as np

1.9.2. Working with Excel file

>>> 
... df = pd.read_excel(
...     io='filename.xls',
...     sheet_name=['Sheet 1'],
...     skiprows=1,
...     skip_blank_lines=True,
...     parse_dates=['from', 'to'],
... )
...
... # Rename Columns to match database columns
... df.rename(columns={
...     'from': 'date_start',
...     'to': 'date_end',
... }, inplace=True)
...
... # Drop all records where "Name" is empty (NaN)
... df.dropna(subset=['name'], how='all', inplace=True)
...
... # Add column ``blacklist`` with data
... df['blacklist'] = [True, False, True, False]
...
... # Change NaN to 0
... df.fillna(0, inplace=True)
...
... # Select columns
... columns = ['name', 'date_start', 'date_end', 'blacklist']
...
... # Print results
... print( df[columns] )

1.9.3. Working with dirty CSV

>>> DATA = 'https://python3.info/_static/iris-dirty.csv'
>>> COLUMNS = ['sepal_length', 'sepal_width',
...            'petal_length', 'petal_width', 'species']
>>>
>>> nrows, ncols, *class_labels = pd.read_csv(DATA, nrows=0).columns
>>> label_encoder = dict(enumerate(class_labels))
>>>
>>> df = (
...     pd
...     .read_csv(DATA, skiprows=1, names=COLUMNS)
...     .replace(label_encoder)
... )
>>>
>>> plot = df.plot(kind='density')  

1.9.4. Working with CSV

>>> DATA = 'https://python3.info/_static/iris-clean.csv'

Read data from source:

>>> df = pd.read_csv(DATA)

Rename columns:

>>> df.columns = ['sepal_length', 'sepal_width',
...               'petal_length', 'petal_width', 'species']

Get first n records:

>>> df.head(n=5)
   sepal_length  sepal_width  petal_length  petal_width     species
0           5.4          3.9           1.3          0.4      setosa
1           5.9          3.0           5.1          1.8   virginica
2           6.0          3.4           4.5          1.6  versicolor
3           7.3          2.9           6.3          1.8   virginica
4           5.6          2.5           3.9          1.1  versicolor

Get last n records:

>>> df.tail(n=3)
     sepal_length  sepal_width  petal_length  petal_width    species
148           4.9          2.5           4.5          1.7  virginica
149           6.3          2.8           5.1          1.5  virginica
150           6.8          3.2           5.9          2.3  virginica

Shuffle columns and reset indexes (drop column with old index):

>>> np.random.seed(0)
>>> df.sample(n=10).reset_index(drop=True)
   sepal_length  sepal_width  petal_length  petal_width     species
0           6.7          3.3           5.7          2.1   virginica
1           6.5          2.8           4.6          1.5  versicolor
2           6.3          2.3           4.4          1.3  versicolor
3           6.8          2.8           4.8          1.4  versicolor
4           5.7          2.9           4.2          1.3  versicolor
5           6.3          3.4           5.6          2.4   virginica
6           5.5          2.4           3.8          1.1  versicolor
7           6.9          3.1           5.4          2.1   virginica
8           6.3          2.5           4.9          1.5  versicolor
9           4.9          3.1           1.5          0.2      setosa

Calculate descriptive statistics:

>>> df.describe()
       sepal_length  sepal_width  petal_length  petal_width
count    151.000000   151.000000    151.000000   151.000000
mean       5.840397     3.062914      3.741722     1.194040
std        0.826089     0.439790      1.770738     0.762472
min        4.300000     2.000000      1.000000     0.100000
25%        5.100000     2.800000      1.550000     0.300000
50%        5.800000     3.000000      4.300000     1.300000
75%        6.400000     3.350000      5.100000     1.800000
max        7.900000     4.400000      6.900000     2.500000
Table 1.2. Descriptive statistics

Function

Description

count

Number of non-null observations

sum

Sum of values

mean

Mean of values

mad

Mean absolute deviation

median

Arithmetic median of values

min

Minimum

max

Maximum

mode

Mode

abs

Absolute Value

prod

Product of values

std

Unbiased standard deviation

var

Unbiased variance

sem

Unbiased standard error of the mean

skew

Unbiased skewness (3rd moment)

kurt

Unbiased kurtosis (4th moment)

quantile

Sample quantile (value at %)

cumsum

Cumulative sum

cumprod

Cumulative product

cummax

Cumulative maximum

cummin

Cumulative minimum

1.9.5. Hist Plot

>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>>
>>>
>>> DATA = 'https://python3.info/_static/iris-clean.csv'
>>>
>>> df = pd.read_csv(DATA)
>>> plot = df.hist()
>>> plt.show()  
../../_images/pandas-about-workflow-plot-hist.png

Figure 1.8. Visualization using hist

1.9.6. Density Plot

>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>>
>>>
>>> DATA = 'https://python3.info/_static/iris-clean.csv'
>>>
>>> df = pd.read_csv(DATA)
>>> plot = df.plot(kind='density', subplots=True, layout=(2,2), sharex=False)  
>>> plt.show()  
../../_images/pandas-about-workflow-plot-density.png

Figure 1.9. Visualization using density

1.9.7. Box Plot

>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>>
>>>
>>> DATA = 'https://python3.info/_static/iris-clean.csv'
>>>
>>> df = pd.read_csv(DATA)
>>> plot = df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
>>> plt.show()  
../../_images/pandas-about-workflow-plot-box.png

Figure 1.10. Visualization using density

1.9.8. Scatter Matrix

>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from pandas.plotting import scatter_matrix
>>>
>>>
>>> DATA = 'https://python3.info/_static/iris-clean.csv'
>>>
>>> df = pd.read_csv(DATA)
>>> plot = scatter_matrix(df)
>>> plt.show()  
../../_images/pandas-about-workflow-plot-scatter-matrix.png

Figure 1.11. Visualization using density