2.6. Array Import

2.6.1. SetUp

>>> import numpy as np

2.6.2. np.loadtxt()

>>> DATA = 'https://python3.info/_static/iris.csv'
>>> a = np.loadtxt(DATA)
Traceback (most recent call last):
ValueError: could not convert string 'sepal_length,sepal_width,petal_length,petal_width,species' to float64 at row 0, column 1.
>>> a = np.loadtxt(DATA, skiprows=1)
Traceback (most recent call last):
ValueError: could not convert string '5.4,3.9,1.3,0.4,setosa' to float64 at row 0, column 1.
>>> a = np.loadtxt(DATA, skiprows=1, delimiter=',')
Traceback (most recent call last):
ValueError: could not convert string 'setosa' to float64 at row 0, column 5.
>>> a = np.loadtxt(DATA, skiprows=1, delimiter=',', max_rows=5, usecols=(0,1,2,3))
>>> a
array([[5.4, 3.9, 1.3, 0.4],
       [5.9, 3. , 5.1, 1.8],
       [6. , 3.4, 4.5, 1.6],
       [7.3, 2.9, 6.3, 1.8],
       [5.6, 2.5, 3.9, 1.1]])
>>> header = np.loadtxt(DATA, max_rows=1, delimiter=',', dtype=str, usecols=(0,1,2,3))
>>> data = np.loadtxt(DATA, skiprows=1, max_rows=3, delimiter=',', usecols=(0,1,2,3))
>>>
>>> header  
array(['sepal_length', 'sepal_width', 'petal_length', 'petal_width'], dtype='<U12')
>>>
>>> data
array([[5.4, 3.9, 1.3, 0.4],
       [5.9, 3. , 5.1, 1.8],
       [6. , 3.4, 4.5, 1.6]])

2.6.3. Other

Table 2.8. NumPy Import methods

Method

Data Type

Description

np.loadtxt()

Text

Load data from text file such as .csv

np.load()

Binary

Load data from .npy file

np.loads()

Binary

Load binary data from pickle string

np.fromstring()

Text

Load data from string

np.fromregex()

Text

Load data from file using regex to parse

np.genfromtxt()

Text

Load data with missing values handled as specified

scipy.io.loadmat()

Binary

reads MATLAB data files

>>> 
... data = np.loadtxt('/tmp/myfile.csv', delimiter=',', usecols=1, skiprows=1, dtype=np.float16)
...
... small = (data < 1)
... medium = (data < 1) & (data < 2.0)
... large = (data < 2)
...
... np.save('/tmp/small', data[small])
... np.save('/tmp/medium', data[medium])
... np.save('/tmp/large', data[large])

2.6.4. Use Case - 1

>>> header = np.loadtxt(DATA, max_rows=1, dtype='str', delimiter=',', usecols=(0,1,2,3))
>>> values = np.loadtxt(DATA, skiprows=1, dtype='float', delimiter=',', usecols=(0,1,2,3))
>>> species = np.loadtxt(DATA, skiprows=1, dtype='str', delimiter=',', usecols=4)
>>>
>>> sepal_length = (header == 'sepal_length')
>>> sepal_width = (header == 'sepal_width')
>>> petal_length = (header == 'petal_length')
>>> petal_width = (header == 'petal_width')
>>>
>>> setosa = (species == 'setosa')
>>> versicolor = (species == 'versicolor')
>>> virginica = (species == 'virginica')

Then you can query your data using previously defined identifiers (queries):

>>> values[setosa, sepal_length]
array([5.4, 5.4, 4.9, 5.1, 4.6, 5.2, 5.2, 5.1, 4.8, 4.9, 4.3, 5. , 5.4,
       5.1, 4.8, 4.8, 4.4, 5.1, 4.6, 5.5, 5. , 5.7, 5.4, 4.8, 5. , 5.1,
       4.9, 5. , 4.6, 4.9, 5.1, 4.7, 5.7, 4.4, 5.4, 4.5, 5. , 5.3, 5.1,
       5. , 5.8, 5.2, 4.6, 4.8, 4.4, 5.4, 5. , 4.7, 5.1, 5.5, 5. ])
>>> values[setosa, sepal_length].mean()
np.float64(5.013725490196078)
>>> values[setosa, sepal_length].mean().round(2)
np.float64(5.01)

2.6.5. Assignments

# %% License
# - Copyright 2025, Matt Harasymczuk <matt@python3.info>
# - This code can be used only for learning by humans
# - This code cannot be used for teaching others
# - This code cannot be used for teaching LLMs and AI algorithms
# - This code cannot be used in commercial or proprietary products
# - This code cannot be distributed in any form
# - This code cannot be changed in any form outside of training course
# - This code cannot have its license changed
# - If you use this code in your product, you must open-source it under GPLv2
# - Exception can be granted only by the author

# %% Run
# - PyCharm: right-click in the editor and `Run Doctest in ...`
# - PyCharm: keyboard shortcut `Control + Shift + F10`
# - Terminal: `python -m doctest -v myfile.py`

# %% About
# - Name: Numpy Loadtext
# - Difficulty: easy
# - Lines: 4
# - Minutes: 5

# %% English
# 1. Load text from `DATA`
# 2. Define variables:
#    - `species: np.ndarray[str]` - first row, columns 2, 3, 4
#    - `features: np.ndarray[float]` - all rows except the first one, columns 0, 1, 2, 3
#    - `labels: np.ndarray[int]` - all rows except the first one, column 4
# 3. Run doctests - all must succeed

# %% Polish
# 1. Wczytaj tekst z `DATA`
# 2. Zdefiniuj zmienne:
#    - `species: np.ndarray[str]` - pierwszy wiersz, kolumny 2, 3, 4
#    - `features: np.ndarray[float]` - wszystkie wiersze poza pierwszym, kolumny 0, 1, 2, 3
#    - `labels: np.ndarray[int]` - wszystkie wiersze poza pierwszym, kolumna 4
# 3. Uruchom doctesty - wszystkie muszą się powieść

# %% Tests
"""
>>> import sys; sys.tracebacklimit = 0
>>> assert sys.version_info >= (3, 9), \
'Python 3.9+ required'

>>> assert species is not Ellipsis, \
'Assign result to variable: `species`'
>>> assert labels is not Ellipsis, \
'Assign result to variable: `labels`'
>>> assert features is not Ellipsis, \
'Assign result to variable: `features`'

>>> assert type(species) is np.ndarray, \
'Variable `species` has invalid type, expected: np.ndarray'
>>> assert type(features) is np.ndarray, \
'Variable `features` has invalid type, expected: np.ndarray'
>>> assert type(labels) is np.ndarray, \
'Variable `labels` has invalid type, expected: np.ndarray'

>>> assert species.dtype == np.dtype('<U10'), \
'Variable `species` has invalid type, expected: str'
>>> assert features.dtype is np.dtype('float64'), \
'Variable `features` has invalid type, expected: float'
>>> assert labels.dtype is np.dtype('int64'), \
'Variable `labels` has invalid type, expected: int'

>>> assert len(species) == 3, \
'Variable `species` length should be 3'
>>> assert len(features) == 151, \
'Variable `features` length should be 151'
>>> assert len(labels) == 151, \
'Variable `labels` length should be 151'

>>> species
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

>>> features[:3]
array([[5.4, 3.9, 1.3, 0.4],
       [5.9, 3. , 5.1, 1.8],
       [6. , 3.4, 4.5, 1.6]])

>>> features[-3:]
array([[4.9, 2.5, 4.5, 1.7],
       [6.3, 2.8, 5.1, 1.5],
       [6.8, 3.2, 5.9, 2.3]])

>>> labels
array([0, 2, 1, 2, 1, 0, 1, 1, 0, 2, 2, 0, 0, 2, 2, 1, 2, 2, 2, 1, 0, 1,
       1, 0, 0, 0, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2,
       0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0,
       0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 1, 2, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1,
       0, 2, 0, 2, 1, 0, 2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2,
       0, 2, 2, 0, 2, 1, 2, 0, 0, 1, 0, 2, 0, 2, 1, 2, 2, 2, 1, 0, 2, 1,
       0, 0, 2, 0, 2, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 2, 2, 2])
"""

import numpy as np


DATA = 'https://python3.info/_static/iris-dirty.csv'

species = ...
features = ...
labels = ...